Backbone dynamics of free barnase and its complex with barstar determined by 15N NMR relaxation study.
نویسندگان
چکیده
Backbone dynamics of uniformly 15N-labeled free barnase and its complex with unlabelled barstar have been studied at 40 degrees C, pH 6.6, using 15N relaxation data obtained from proton-detected 2D [1H]-15N NMR spectroscopy. 15N spin-lattice relaxation rate constants (R1), spin-spin relaxation rate constants (R2), and steady-state heteronuclear [1H]-15N NOEs have been measured at a magnetic field strength of 14.1 Tesla for 91 residues of free barnase and for 90 residues out of a total of 106 in the complex (excluding three prolines and the N-terminal residue) backbone amide 15N sites of barnase. The primary relaxation data for both the cases have been analyzed in the framework of the model-free formalism using both isotropic and axially symmetric models of the rotational diffusion tensor. As per the latter, the overall rotational correlation times (tau(m)) are 5.0 and 9.5 ns for the free and complexed barnase, respectively. The average order parameter is found to be 0.80 for free barnase and 0.86 for the complex. However, the changes are not uniform along the backbone and for about 5 residues near the binding interface there is actually a significant decrease in the order parameters on complex formation. These residues are not involved in the actual binding. For the residues where the order parameter increases, the magnitudes vary significantly. It is observed that the complex has much less internal mobility, compared to free barnase. From the changes in the order parameters, the entropic contribution of NH bond vector motion to the free energy of complex formation has been calculated. It is apparent that these motion's cause significant unfavorable contributions and therefore must be compensated by many other favorable contributions to effect tight complex formation. The observed variations in the motion and their different locations with regard to the binding interface may have important implications for remote effects and regulation of the enzyme action.
منابع مشابه
A Continuum Electrostatic Analysis of Protein Binding: Barnase–Barstar Complex Formation
Understanding the nature of protein–protein recognition is fundamental to the study of biological processes. The complex between barnase, a bacterial RNase, with its intracellular inhibitor, barstar, is a suitable system for the general problem of molecular recognition since the structures of the proteins have been solved, both separately and in the protein complex. This interaction between bar...
متن کاملDiscrepancies between the NMR and X-ray structures of uncomplexed barstar: analysis suggests that packing densities of protein structures determined by NMR are unreliable.
The crystal structure of the C82A mutant of barstar, the intracellular inhibitor of the Bacillus amyloliquefaciens ribonuclease barnase, has been solved to a resolution of 2.8 A. The molecule crystallizes in the space group I41 with a dimer in the asymmetric unit. An identical barstar dimer is also found in the crystal structure of the barnase-barstar complex. This structure of uncomplexed bars...
متن کاملEffect of interprotein polarization on protein-protein binding energy
Molecular dynamics simulation in explicit water for the binding of the benchmark barnase-barstar complex was carried out to investigate the effect polarization of interprotein hydrogen bonds on its binding free energy. Our study is based on the AMBER force field but with polarized atomic charges derived from fragment quantum mechanical calculation for the protein complex. The quantum-derived at...
متن کاملProtein-protein interaction: a genetic selection for compensating mutations at the barnase-barstar interface.
Barnase and barstar are trivial names of the extracellular RNase and its intracellular inhibitor produced by Bacillus amyloliquefaciens. Inhibition involves the formation of a very tight one-to-one complex of the two proteins. With the crystallographic solution of the structure of the barnase-barstar complex and the development of methods for measuring the free energy of binding, the pair can b...
متن کاملInteraction energy decomposition in protein-protein association: a quantum mechanical study of barnase-barstar complex.
Protein-protein interactions are very important in the function of a cell. Computational studies of these interactions have been of interest, but often they have utilized classical modelling techniques. In recent years, quantum mechanical (QM) treatment of entire proteins has emerged as a powerful approach to study biomolecular systems. Herein, we apply a semi-empirical divide and conquer (DC) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomolecular NMR
دوره 18 2 شماره
صفحات -
تاریخ انتشار 2000